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SUMMARY

In this work, the immersed element-free Galerkin method (IEFGM) is proposed for the solution of fluid–
structure interaction (FSI) problems. In this technique, the FSI is represented as a volumetric force in the
momentum equations. In IEFGM, a Lagrangian solid domain moves on top of an Eulerian fluid domain
that spans over the entire computational region. The fluid domain is modeled using the finite element
method and the solid domain is modeled using the element-free Galerkin method. The continuity between
the solid and fluid domains is satisfied by means of a local approximation, in the vicinity of the solid
domain, of the velocity field and the FSI force. Such an approximation is achieved using the moving
least-squares technique. The method was applied to simulate the motion of a deformable disk moving in
a viscous fluid due to the action of the gravitational force and the thermal convection of the fluid. An
analysis of the main factors affecting the shape and trajectory of the solid body is presented. The method
shows a distinct advantage for simulating FSI problems with highly deformable solids. Copyright q 2009
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical investigations involving large deformation-type problems require reliable numerical
modeling and simulation techniques. According to Li and Liu [1], the finite element method (FEM)
subdivision procedure is not always advantageous in computations involving large deformations.
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For more than 30 years, many research efforts have been devoted to adapt the FEM subdivision
to topological and geometrical changes in the domain of interest, occurring, for instance, during
the deformation of the material. The so-called arbitrary Lagrangian Eulerian method is a finite
element formulation that moves the mesh independently from the material motion, allowing mesh
distortion to be minimized. But even this technique has its limitations for some practical problems
involving large strain continuum deformation.

With the aim of finding a better approximation of continuum compatibility, a series of new
discretization methods, called meshfree particle methods, were developed, Li and Liu [1],
Belytschko et al. [2], and Liu [3]. Meshfree particle methods have been designed to improve the
inadequacy of FEM discretization. The main idea of these innovative methods is to discretize
a continuum by only a set of nodal points without additional mesh constraints. The meshfree
methods have a clear advantage over the traditional FEMs because meshfree interpolants have
a larger support size than FEM interpolants. In 1977, Gingold and Monaghan [4] and Lucy [5]
initially developed the smoothed particle hydrodynamics (SPH) method for the simulation of
astrophysics problems. Their breakthrough was a method for the calculation of derivatives that did
not require a structured computational mesh. Review papers by Benz [6] and Monaghan [7] cover
the early development of SPH. Libersky and Petchek [8] extended SPH to work with the full
stress tensor in two dimensions. This addition allowed SPH to be used in problems where material
strength is important. The development of SPH with strength of materials continued with extension
to three dimensions by Libersky et al. [9], and the linking of SPH with existing finite element
codes by Attaway et al. [10] and Johnson [11]. The introduction of material strength highlighted
shortcomings in the basic method: accuracy, tensile instability, zero energy modes, and artificial
viscosity. These shortcomings were identified in the first comprehensive analysis of the SPH
method by Swegle et al. [12] and Wen et al. [13]. The problems of consistency and accuracy of the
SPH method, identified by Belytschko et al. [14], were addressed by Randles and Libersky [15]
and Vignjevic et al. [16]. This resulted in a normalized first-order consistent version of the SPH
method with improved accuracy. The attempts to ensure first-order consistency in SPH led to the
development of a number of variants of the SPH method, such as element-free Galerkin method
(EFGM) by Belytschko et al. [2] and Krongauz and Belytschko [17], reproducing kernel particle
method (RKPM) by Liu et al. [18, 19], moving least-squares (MLS) particle hydrodynamics by
Dilts [20], and the meshless local Petrov Galerkin method by Atluri and Zhu [21]. These methods
allow the restoration of consistency of any order by means of a correction function. It has been
shown in [21] that the approximations based on corrected kernels, like RKPM, are equivalent
to moving least-square approximations, like EFGM. The issue of stability was dealt with in the
context of particle methods in general by Belytschko and Xiao [22], and independently by Randles
et al. [23]. They reached the same conclusions as Swegle et al. [12] in his initial study.

The RKPM approximation functions have been used by Zhang and Gay [24] and Zhang et al.
[25] to develop the immersed finite element method (IFEM) to model fluid–structure interaction
(FSI) processes. In this method, a Lagrangian solid mesh moves on top of a background Eulerian
fluid mesh that spans over the entire computational domain. The FSI is represented as a body force
term in the momentum equations. Although the IFEM uses the mesh-free RKPM interpolants to
couple the solid and fluid domains, a finite element discretization is used for both regions. An
improvement of the IFEM with respect to the previously developed immersed boundary method
is that the structural models in IFEM are not restricted to one-dimensional volumeless structures
such as fibers; instead, they may occupy a finite volume in the fluid and a constitutive model can
be used to calculate the deformation and stress in the solid.
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The immersed element-free Galerkin method (IEFGM) was recently introduced by Pita and
Felicelli [26]. This technique combines aspects of the IFEM, developed by Zhang et al. [25], and
the EFG method of Belytschko et al. [2]. In IEFGM, a Lagrangian solid domain moves on top
of an Eulerian fluid domain that spans over the entire computational region. The fluid domain is
modeled using the FEM, whereas the solid domain is modeled using the EFGM. The continuity
between the solid and fluid regions is satisfied by means of a local approximation, in the vicinity
of the solid domain, of the velocity field and the FSI force. Such an approximation is achieved
using the MLS technique [27]. The innovative fluid–structure coupling of the IEFGM, based on the
meshfree method and the MLS shape functions, allows the efficient handling of highly distorted
solids, which would be quite difficult to achieve with adaptive finite element techniques.

The aim of this work is to show the capabilities of the IEFGM to handle FSI problems where
the solid body undergoes large deformations. Several numerical examples are presented in which
an elastic solid disk, with different values of density and the Young modulus, was submerged in
a viscous Newtonian fluid under unsteady thermal convection. The trajectory and deformation of
the solid were analyzed in each case to provide insight into the physics behind the fluid–structure
interaction.

2. FORMULATION OF THE IEFGM

2.1. Basic definitions

Let us consider a two-dimensional deformable solid body, �s, that is completely immersed in a
fluid domain, �f. These two domains do not intersect, and their union defines the computational
domain �. Therefore we can write

�f∪�s = �

�f∪�s = �
(1)

Assuming incompressible solid and fluid domains, and a no-slip condition between them, the
union of the two domains can be treated as one continuum incompressible region with continuous
velocity, pressure, and temperature fields. In this work, the fluid domain is modeled using the
FEM with an Eulerian formulation where the independent variables are the node’s time-invariant
actual position x and the actual time t and the dependent variables are the velocity v, the pressure
p, and the temperature T . On the other hand, the solid domain is modeled using the EFGM with
an updated Lagrangian formulation in which the independent variables are the particle’s current
position xs and the actual time t and the dependent variable is the particle’s displacement us

defined as the difference between the current and previous position. A schematic of the fluid and
solid domains including the independent variables of each formulation and the displacement of
the solid particles is presented in Figure 1. Note that for clarity we use the notion of node to refer
to the fluid domain (described with an FEM) and the notion of particle to make reference to the
solid domain (described with an element-free method).

2.2. Overlapping domain

When the solid is completely immersed in the fluid, the real geometrical relationships between
the solid and fluid domains are given by Equation (1). Following the approach adopted by
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4 C. M. PITA AND S. D. FELICELLI

Figure 1. Definition of the solid (Lagrangian) domain and the fluid (Eulerian) domain. The Eulerian
configuration is characterized by the time invariant position vector x whereas the Lagrangian configuration

is characterized by the current position vector xs.

Zhang et al. [25] in their IFEM method, we assume that the fluid occupies the entire compu-
tational domain and that the solid region is placed on top of the fluid domain. This assumption
introduces what is called an overlapping domain (�̄), which is the region where the solid and
fluid domains coexist (i.e. �̄=�s). Note that this is a simplifying assumption and does not corre-
spond with the real physical problem. This assumption simplifies the computations allowing the
equations for the fluid and the solid domains to be solved independently. It also allows the inde-
pendent discretization of the fluid and solid regions. The drawback of this simplification is that
the overlapping domain introduces non-physical effects in the equations of motion that must be
considered.

2.3. Governing equations

2.3.1. Solid domain. The FSI force within the solid domain �s is denoted as f FSI,si , where
FSI stands for fluid–structure interaction, s means that the expression is valid within the
solid domain, and the sub-index i represents the i th Cartesian component of the force vector
field. As in Li and Liu [1], Zhang and Gay [24], and Zhang et al. [25], this force can be
written as

FFSI,s
i

def= −(�s−�f)
dvsi
dt

+�si j, j −�fi j, j +(�s−�f)gi ∀xs∈�s (2)

The FSI force is calculated based on a force balance in the updated Lagrangian solid domain,
Equation (2), and it is treated as an additional body force acting on the fluid, Equation (3). Note
that, for brevity, we ignored in Equation (2) the fluid stress within the solid domain. Details on
the weak form of Equation (2) can be found in Zhang and Gay [24].
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2.3.2. Computational domain. In the IEFGM, the Eulerian incompressible Newtonian fluid is
described using the Navier–Stokes equations. The real fluid occupies the region �f=�/�̄, i.e. the
entire computational domain minus the overlapping domain. As done in Li and Liu [1], Zhang
and Gay [24], and Zhang et al. [25], the momentum equation for the entire computational domain
(real fluid plus artificial fluid) can be obtained by combining the Navier–Stokes equation for the
real fluid and the interaction force as

�f
dvi
dt

=�fi j, j + f FSIi ∀x∈� (3)

In Equation (3), we assume that no external force has been applied to the fluid domain. Note that
the only difference between this and the Navier–Stokes equation is the last term on the right-hand
side, namely f FSIi . This term accounts for the ‘extra’ artificial fluid contained in the overlapping
domain and, in the IEFGM formulation, it has a non-zero value inside the overlapping region and
its immediate surroundings. Its value decreases to zero at places outside the region.

The two interaction forces f FSIi and f FSI,si constitute an action–reaction force pair. The force

f FSI,si acts upon the solid domain and it is defined in Equation (2). On the other hand, the force f FSIi

acts upon the artificial fluid inside the overlapping domain and it is obtained by distributing f FSI,si
from the solid domain to the computational fluid domain. The way in which we approach this
distribution is a central point of this work and it is explained in Section 2.4.2.

Since we consider the whole computational domain � to be incompressible, we apply the
incompressibility constraint as

vi,i =0 ∀x∈� (4)

Equations (3) and (4), with the variables defined using an Eulerian formalism, represent the strong
forms of the governing equations for the entire computational domain (�f∪�̄=�). A FEM with
a penalty formulation to impose incompressibility in the fluid domain and a Petrov–Galerkin
technique to treat the advection term [28] were used to solve these equations. In this work, a
temperature distribution within the fluid domain was calculated by coupling the energy equation
to the FSI problem in an explicit manner. The solid region, in contrast, was assumed to be in
thermal equilibrium with the fluid at all times.

2.4. Coupling between the solid and fluid domains

A critical point in the development of a numerical code capable of simulating fluid–structure
interaction problems with the IEFGM formulation is the coupling between the fluid and solid
domains. Two critical variables relevant to this coupling are the solid domain velocity vs(x, t) and
the interaction force acting upon the artificial fluid in the overlapping domain fFSI.

2.4.1. Solid domain velocity vs. We consider a no-slip condition between the solid and the over-
lapping domains. Moreover, since the discretizations of the solid and fluid regions are independent,
the nodes of the Eulerian grid in the computational domain will, in general, not coincide with
the moving particles of the solid domain at every time step. Therefore, a coupling between the
fluid nodal velocity v(x, t) and the solid particles velocity vs(x, t) is needed. This coupling is
accomplished by means of a local approximation of the fluid velocity field.

In Figure 2 a schematic representation of the local approximation of the x-component of the
fluid nodal velocity field (vx ) is shown. The dots represent the nodal values of the fluid velocity
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6 C. M. PITA AND S. D. FELICELLI

Figure 2. Schematic representation of the local approximation of the x-component of the fluid nodal
velocity (vx ). The dots represents the velocity at different nodes in the Eulerian fluid mesh. The solid

curve represents the local approximation of the x-component of the fluid velocity field.

and the solid curve represents the approximated continuum velocity field (vhx ). The approximation
is done by means of the MLS procedure. Several authors [27, 29] have used the MLS procedure
to approximate a set of scattered data. Following the minimization procedure described in Dolbow
and Belytschko [30], the approximated velocity field may be expressed as

vh(x)=
n∑
j

� j (x)v(x j , t) ∀x j ∈�x (5)

where the MLS shape functions are defined as

� j (x)
def= pT(x) ·

[
n∑

i=1
w(x−xi ) ·p(xi ) ·pT(xi )

]−1

·w(x−x j ) ·p(x j ) (6)

Since we are considering a no-slip condition between the fluid and solid domains, we can write

vs(x=vh(x) ∀x∈�s≡ �̄ (7)

For a solid particle at current position xs(t), an influence domain �x that covers a subset of n
fluid nodes j positioned at x j is constructed. Using Equations (5), (6) and (7), the velocity for the
solid particle is then obtained from the velocities at fluid nodes within �x . A detailed explanation
of the method used to estimate the size of the influence domain is presented in Liu [3].

2.4.2. Distribution of the interaction force, fFSI, in the fluid domain. Equation (2) gives the FSI
force at each solid particle’s position. To distribute this force onto the fluid nodes, we used the
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same approach as for the velocity field approximation in the solid domain, i.e. the MLS procedure.
The local approximation of the interaction force can be expressed as

f FSI,si (xs)=
n∑
j

� j (xs) f
FSI,s
i (xsj ) ∀xsj ∈�xs (8)

As mentioned in Section 2.3.2, the two interaction forces f FSIi and f FSI,si constitute an action and
reaction force pair; hence, they must be equal in magnitude and act in opposite directions.

f FSIi (x)=− f FSI,si (x) ∀x∈ �̄ (9)

When distributing the FSI force, a fluid node may fall inside the influence domain of more
than one solid particle (n in Equation (8)). Therefore, the interaction force at each solid node
contributes in part to the interaction force at each surrounding fluid node.

2.4.3. Updating the position of the solid particles. Since we are considering a current Lagrangian
description for the solid domain, the position of the solid particles can be updated from the solid
velocity calculated in Equation (7):

x s,n+1
i = x s,ni +v

s,n+1
i =�t (10)

where the index n+1 indicates quantities evaluated at the current time step and �t is the time step
size.

2.5. Algorithm

In this section we summarize the assumptions made for the fluid and the solid domain and the
proposed algorithm. The assumptions made are the following:

(a) The fluid is incompressible.
(b) The solid is incompressible.
(c) The solid must remain immersed in the fluid at all times during the simulation.
(d) No-slip condition between the solid and fluid domains.

The algorithm for the IEFGM can be outlined as follows:

(a) Set the initial position of all the solid particles at time t=0(�s
0).

(b) Calculate the fluid–solid interaction force f FSI,si on the solid particles using Equation (2).
(c) Distribute the solid–fluid interaction force from the solid domain onto the fluid domain

(from f FSI,si to f FSIi ) using Equations (6), (8), and (9).
(d) Approximate the solid velocity vs using Equations (5), (6), and (7).
(e) Update the positions of the solid particles using Equation (10).
(f ) Solve for the fluid velocities and pressure distribution using Equations (3) and (4).

2.5.1. Important points.

• The fact that the interaction force f FSIi is added in an explicit manner into the Navier–Stokes
equation for the fluid, Equation (3), restricts the size of the time step to be used. The more
rigid the solid material, the smaller the time step needed for convergence. In all the cases of
study presented in this work, a time step of 1.0e−4s had to be used.
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8 C. M. PITA AND S. D. FELICELLI

• According to Zhang and Gay [24], the spacing of the fluid grid has to be approximately two
times larger than the spacing of the background solid mesh to avoid fluid sinking through into
the solid domain. It is appropriate to maintain the fluid grid larger than the solid background
grid but not too large because it may cause a decrease in accuracy. Note that even though in
this work the solid is being modeled using the element-free Galerkin (EFG) mehfree method,
as detailed in Dolbow and Belytschko [30], we still need a background grid in the solid region
for the integration of the weak form of the governing equations.

3. NUMERICAL EXAMPLES

In this work, we study four two-dimensional numerical examples to explore the capability and
performance of the IEFGM formulation. All the simulated examples consist of the same geometrical
configuration, a soft solid disk (0.2mm in diameter) moving in a viscous fluid (a 20mm high by
5mm wide domain) due to the action of the gravitational force and due to a fluid’s velocity field
produced by thermal convection. The difference between the cases lies in the different values of
the solid’s density and the solid’s Young’s modulus considered. Moreover, in all four cases, we
assumed the solid to be an incompressible elastic material governed by Hooke’s constitutive law.

The authors recognize that for structures with large deformations a more suitable constitutive
model, like a Mooney–Rivlin material description, should be used. Nonetheless, the main objective
of this work is to show the capabilities of the method to handle large deformations without focusing
for now on the real material response. In a future work, where this technique will be applied
to simulate defects in casting processes caused by deformable oxide films [31], a more realistic
constitutive model will be considered.

The fluid and solid’s geometrical and material properties are summarized in Table I. The
properties of the fluid are similar to those of a Pb–Sn liquid metal. Although not presented in this
work, we will extend the current model to simulate the transport of inclusions during solidification
of alloys.

The temperature initial and boundary conditions are the same for all cases studied. We consider
for the fluid domain an initial temperature Ti=550K and a constant temperature boundary condition
To=600K on the right vertical boundary, i.e. ∀x∈{x=5mm,0�y�10mm}. The computational
domain is thermally insulated on the other three boundaries. Non-slip boundary conditions are
considered on all solid boundaries. In Figure 3, the temperature boundary conditions for the
computational domain and the two initial positions of the solid domain considered in this work
are shown.

Table I. Geometrical and material properties of the fluid and solid domains.

Fluid domain Circular solid domain

w (m) 0.01 —
h (m) 0.02 —
d (m) — 200e−6
�(kg/m3) 8800 8800/9700
�(Ns/m2) 2e−3 —
E(N/m2) — 10/1000/3000
� — 0.3
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FLUID–SOLID INTERACTION PROBLEMS WITH THERMAL CONVECTION 9

Figure 3. Two-dimensional computational domain considered, with the corresponding temperature
boundary conditions and the two solid’s initial positions reckoned in this work.

The Eulerian and Lagrangian grids are obtained using Hypermesh [32]. To assure an appropriate
integration at all times, the Lagrangian-background grid is independent of the position of the
particle discretization. An adaptive meshing scheme is introduced, which refines the Eulerian
grid locally near the position of the solid domain and is computationally inexpensive since the
Eulerian and Lagrangian-background grids are generated independently. It is important to note
that the Eulerian grid is comprised only of quadrilateral elements. Although a triangular grid
would be more suitable for adaptive refinement, the current flow solver formulation (based on
the penalty method) requires rectangular elements. An implementation using adaptive re-meshing
with triangular elements based on the fractional step formulation will be reported elsewhere. An
example of the Eulerian and Lagrangian (background) grids used is shown in Figure 4.

In FEM, the integration grid is the same as the element grid. To obtain accurate results, the
element grid must be sufficiently fine and a sufficient number of integration points per element
must be used. In EFG, however, the background integration grid is required only in performing
the integration of computing the stiffness matrix, and its re-meshing can be done independently
(up to a certain extent) of the movement of the particles [3].

3.1. Case I

The solid and fluid’s properties considered for this case are summarized in Table I. Specifically,
we consider a solid’s density �s=�f=8800kg/m3 and a Young’s modulus E=3000N/m2. The
initial position of the Lagrangian solid domain is x=(0.003m,0.018m), and it is indicated as
‘Initial position 1’ in Figure 3. In this case of study, we allow heat conduction within the fluid
domain for 1 s before immersing the solid body. Therefore, by the time the solid is immersed,
there is a non-constant temperature distribution and a corresponding velocity field, due to fluid
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10 C. M. PITA AND S. D. FELICELLI

Figure 4. Comparison between the different scales involved in this problem. Both the Eulerian and the
Lagrangian meshes are implemented using Hypermesh. The Lagrangian solid will always be inside the

refined zone of the Eulerian mesh.

Figure 5. Initial condition under which the solid body was immersed. The temperature distribu-
tion and velocity field were obtained by allowing heat conduction, and the subsequent thermal
convection, within the fluid domain during 1 s prior to the immersion of the solid body. The

solid body is shown to indicate its initial position.

thermal convection, within the fluid. The initial condition under which the solid body is immersed
is shown in Figure 5.

Throughout the simulation, the temperature of the fluid increases as a result of heat being
transferred from the right wall.

One question we can ask ourselves is whether under these conditions the FSI will cause fluid
recirculation along the fluid–structure interface. We address this question by considering Figure 6.
In Figure 6(a), the trajectory followed by the solid body is presented. The background corresponds
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Figure 6. (a) Trajectory followed by the solid body at different times and fluid’s temperature distribution
at time tg=0.67s. Fluid’s velocity field, shape, and position of the solid body at: (b) 0.0006 s; (c) 0.084 s;

(d) 0.162 s; (e) 0.24 s; (f ) 0.32 s; and (g) 0.40 s.

to the temperature field at time tf=0.40s. Also, a detail of the fluid’s velocity field and the shape
and position of the solid domain are presented at six different times in Figures 6(b) thorough (g),
correspond to times tb=0.0006s, tc=0.084s, td=0.162s, te=0.24s, tf=0.32s, and tg=0.40s,
respectively.

The analysis of the fluid’s velocity fields shown allows us to state that, in this particular
problem, the presence of the solid generates an initial recirculation, Figure 6(b), which we refer
to as ‘transitional velocity field’ in this work. This complex transitional field is produced by the
resistance of the solid body to the shear strain initially imposed by the fluid. Moreover, since we
are considering an incompressible elastic solid material governed by Hooke’s constitutive law, the
resistance of the solid body to the initial shear is directly proportional to its Young’s modulus E .
Therefore, the higher the value of E , the larger this resistance will be, causing a stronger transitional
velocity field. This effect can be seen in Figure 7, where the effect of different values of Young’s
modulus on the transitional velocity field is shown.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1–23
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12 C. M. PITA AND S. D. FELICELLI

Figure 7. Transitional velocity field obtained at time t=6.0e−5s after the solid body was immersed.
These cases correspond to different values of Young’s modulus, in particular: (a) Ea=200N/m2; (b)

Eb=500N/m2; (c) Ec=800N/m2; and (d) Ed=1000N/m2.

It is important to note that the transitional velocity field rapidly smoothes out, in fact, from
tc=0.084s, Figures 6(c) through (g), no fluid recirculation is observed. The reason that the FSI
seems not to generate fluid recirculation after the transition lies in the fact that, in this case, the
solid and fluid densities are the same (�s=�f=8800kg/m3). Therefore, the difference between
the buoyancy of the fluid in the overlapping domain and the weight of the solid is zero, and
the ‘extra’ inertial force (when compared with the inertial force of the fluid in the overlapping
domain) introduced by the solid is also zero. This makes the terms (�s−�f)gi and (�s−�f)dvsi /dt
in Equation (2) equal to zero. The interaction force can then be rewritten as

f FSI,si =�si j, j ∀xs∈�s (11)

As we can see in Equation (11), only the solid’s state of stress contributes to the interaction force.
Therefore, the only way in which, under these conditions, the FSI could cause fluid recirculation
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FLUID–SOLID INTERACTION PROBLEMS WITH THERMAL CONVECTION 13

would be for the solid to resist a high displacement gradient imposed by the fluid. The resistance
would increase the value of the solid’s stress tensor, increasing the interaction force f FSI,s, and
generating, as a consequence, a zone of high pressure in the fluid that would cause the correspondent
fluid recirculation. Nonetheless, since the length scale of the solid domain is much smaller than
the length scale of the computational domain, the gradient of displacement imposed by the fluid
onto the solid body is small. This means that all the solid particles move approximately in the
same direction. Therefore, this small displacement gradient does not cause a high resistance from
the solid, preventing the recirculation vortex in the fluid from originating.

In Figure 8, a detailed close-up of the solid’s final shape and the fluid’s final velocity field is
shown. We can see that, as mentioned before, fluid recirculation is not produced and the gradient
of displacement within the solid is small (all the solid particles move in approximately the same
direction). As a consequence, the solid is not greatly distorted.

In Figures 7(b) through (f ) we can see that, after the transition, the solid moves along the
streamlines of the velocity field. A closer examination of the solid’s trajectory in Figure 9 reveals
that the solid not only translates, but it also rotates in a counterclockwise direction.

The red dots and the blue squares in this figure correspond to the centroid of the solid and
the position of the solid particle number one at every time step, respectively. A line segment
connecting each red dot with its corresponding blue square represents a small solid fiber that helps
to visualize the solid’s rotation.

For clarity, in Figure 9 the position and shape of the solid at 12 different times (from right to
left 0.0048 s, 0.041 s, 0.077 s, 0.112 s, 0.150 s, 0.185 s, 0.221 s, 0.257 s, 0.292 s, 0.329 s, 0.365 s,
and 0.400 s) are shown.

To understand the rotation of the solid, we refer to Figure 10. In this figure, the solid body, fluid’s
velocity field, and a contour plot of the x-component of fluid’s velocity field at time t=0.112s

Figure 8. Velocity field and Lagrangian solid at time t=0.40s. A detailed close-up of the final shape of
the solid and the final velocity field is shown.
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Figure 9. (a) Position and shape of the solid body at 12 different times are shown. The red dots represent the
centroid of the solid body, whereas the blue squares represent the position of the solid particle number 1.
The line segments connecting the red dots and the corresponding blue squares at each time represent
small solid fibers. The background corresponds to the temperature distribution at t=0.400s and (b) the
centroids, the positions of particle number 1, and the small fibers of the solid body are shown. The
different times are, from right to left, 0.0048 s, 0.041 s, 0.077 s, 0.112 s, 0.150 s, 0.185 s, 0.221 s, 0.257 s,

0.292 s, 0.329 s, 0.365 s, and 0.400 s.

Figure 10. Velocity field and the Lagrangian solid at time t=0.112s. The contour plot corre-
sponds to the x-component of the velocity field (u). At this particular time the solid body is

approximately moving only in the negative x-direction.
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(fourth solid position from right to left in Figure 9) are shown. As mentioned before, the solid
body moves along the streamlines of the velocity field. At time t=0.112s, the streamlines along
which the solid is moving span almost entirely along the x-direction. This means that, at this
particular time, the solid body is translating only in the horizontal direction. The contour plot of
the x-component of the velocity field shows that the upper part of the body is moving faster than
the lower part, causing a combined movement of translation and rotation in a counterclockwise
direction. This explanation may be extended to every time step acknowledging that the solid will
always move along the streamlines of the velocity field. Since the time difference between each
solid’s position and its successor in Figure 9 is always the same, �t=0.036s, it can be noticed
that the solid is not only translating and rotating, but it is also accelerating.

3.2. Case II

One of the main objectives of this work is to show the capabilities of the IEFGM to deal with large
deformations of the solid body in FSI problems. In order to increase the deformation of the solid,
with respect to the previous results, in this case we increase the value of the solid’s density and
decrease the value of Young’s modulus. Here we consider �s=9700kg/m3 and E=1000N/m2.
We solve the problem with the same geometrical configuration and boundary conditions as in
case I. The initial position of the Lagrangian solid domain is x=(0.003m, 0.018m), and it is
indicated as ‘Initial position 1’ in Figure 3. Also, the initial fluid’s temperature and velocity fields
in which the solid body is immersed are the same as in case I and are shown in Figure 5.

In comparison with the previous results, Figures 11(b) through (f ) show that in this case the
solid undergoes a larger deformation and fluid recirculation appears after the initial transitional
fluid velocity field.

Since in this problem the solid’s density is higher than the fluid’s density (�f=8800kg/m3

and �s=9700kg/m3), the buoyancy force on the solid is lower than its weight. There-
fore, the solid not only follows the thermal convective velocity field, but it also falls by
gravity. This causes the solid to accelerate inside the fluid domain, with the consequent solid
deformation. The smaller value of Young’s modulus reduces solid’s stiffness, allowing a
larger deformation (the final shape of the solid can be seen in Figure 12). Moreover, as the solid
sinks deeper into the fluid and resists, to some extent, the deformation imposed by fluid’s velocity
field, local zones of high pressure are generated in the fluid domain causing the correspondent
fluid recirculation.

In Figure 13 it can be seen that, in its movement, the solid not only translates but it also rotates.
The rotation can be understood using the same principles explained in case I. Nevertheless, it is
important to note that, while in case I the rotation was always in a counterclockwise direction, in
this case the fluid recirculation produces a complex velocity field that causes the solid’s rotation to
alternate between a counterclockwise and a clockwise direction (see Figure 13). The translation and
rotation of the solid imposed by the complex fluid’s velocity field contributes to the asymmetrical
large deformation of the solid body.

3.3. Case III

In order to obtain a larger deformation of the solid domain in a shorter time, compared with the
previous cases, we further lower Young’s modulus. In this case, we consider �f=8800kg/m3,

�s=9700kg/m3, and E=10N/m2. Acknowledging that Young’s modulus of a marshmallow at
room temperature is 29000N/m2, the notably small value considered here makes this problem
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Figure 11. (a) Trajectory followed by the solid body at different times and fluid’s temperature distribution
at time tg=0.36s and (b) fluid’s velocity field, shape, and position of the solid body at (b) tb=0.0048s;

(c) tc=0.047s; (d) td=0.089s; (e) te=0.131s; (f ) tf=0.173s; and (g) tg=0.215s, respectively.

solely a numerical test to illustrate the large solid deformations that the IEFGM can handle.
The initial position of the Lagrangian solid domain is the same as in cases I and II, x=
(0.003m,0.018m), and it is indicated as ‘Initial position 1’ in Figure 3. Also, the initial tempera-
ture profile and fluid velocity field in which the solid body is immersed are the same as in case I
and are shown in Figure 5.

In Figure 14(a), the general trajectory followed by the solid body at four different times and
the temperature field at time te=0.083s are shown. Also, a detail of fluid’s velocity field and the
shape and position of the solid body at times tb=0.0048s, tc=0.041s, td=0.059s, and te=0.083s
are shown in Figures 14(b) through (e), respectively. An important point to note in Figure 14(a)
is that, for this case, we do not obtain a transition velocity field as in the previous cases I and II
(Figures 6(a) and 11(a)). As mentioned before, the transitional field is the result of the resistance
of the solid body to the shear strain initially imposed by the fluid, and it is directly proportional
to Young’s modulus. As shown in Figure 7(a), the transition effect decreases when the value of E
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Figure 12. Velocity field and the Lagrangian solid at time t=0.215s. A detailed close-up of the final
shape of the solid and the final velocity field is shown.

Figure 13. (a) The position and shape of the solid body at 10 different times are shown. The red
dots represent the centroid of the solid body, whereas the blue squares represent the position of
the solid particle number 1. The line segments connecting the red dots and the corresponding blue
squares at each time represent small solid fibers. The background corresponds to the temperature
distribution at t=0.36s and (b) the centroids, the positions of particle number 1, and the small
fibers of the solid body are shown. The different times are, from right to left, 0.0 s, 0.023 s, 0.047 s,

0.071 s, 0.095 s, 0.119 s, 0.143 s, 0.167 s, 0.191 s, and 0.215 s.

decreases and it is almost unnoticeable for E=200N/m2. Since in this problem we are considering
E=10N/m2, the solid offers almost no resistance to the shear strain imposed by the fluid, and
therefore no transitional velocity field is observed immediately after the solid is immersed.
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Figure 14. (a) Trajectory followed by the solid body at different times and fluid’s temperature distribution
at time te=0.083s and (b) fluid’s velocity field, shape, and position of the solid body at (b) tb=0.0048s;

(c) tc=0.041s; (d) td=0.059s; and (e) te=0.083s, respectively.

Figure 15. Velocity field and Lagrangian solid at time t=0.083s. A close-up of the shape
of the solid and the velocity field is shown.
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In Figure 14, we can see that, in this case, an extremely large deformation is obtained in a short
time (the solid deforms in a great manner after only 0.083 s). A close-up of the shape of the solid
and the fluid velocity profile at 0.083 s is shown in Figure 15.

3.4. Case IV

In this case we analyze the movement of a more rigid solid body (compared with the previous
cases) with a constant initial temperature distribution (T0=550K) and no initial fluid velocity.
Here we consider �f=8800kg/m3,�s=9700kg/m3, and E=3000N/m2. The initial position of
the solid body is x=(0.0035m,0.017m), and it is indicated as ‘Initial position 2’ in Figure 3.

In Figure 16(a), the general trajectory followed by the solid body at nine different times and
fluid’s temperature field at time tf=0.47s are shown. Also, a detail of the fluid’s velocity field

Figure 16. (a) Trajectory followed by the solid body at different times and fluid’s temperature distribution
at time tg=0.47s and (b) fluid’s velocity field and shape and position of the solid body at (b) tb=0.01s;
(c) tc=0.1s; (d) td=0.2s; (e) te=0.3s; (f ) tf=0.4s; and (g) tg=0.47s, respectively. Some other solid’s

positions are shown in (a) to better understand its general trajectory.
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Figure 17. (a) Position and shape of the solid body at 16 different times are shown. The red dots represent
the centroid of the solid body, whereas the blue squares represent the position of the solid particle number 1.
The line segments connecting the red dots and the corresponding blue squares at each time represent small
solid fibers. The background corresponds to the temperature distribution at t=0.47s and (b) the centroids,
the positions of particle number 1, and the small fibers of the solid body are shown. The different times
are, from right to left, 0.01 s, 0.04 s, 0.07 s, 0.1 s, 0.13 s, 0.16 s, 0.19 s, 0.22 s, 0.25 s, 0.28 s, 0.31 s, 0.34 s,

0.37 s, 0.40 s, 0.43 s, and 0.47 s.

and the shape and position of the solid body at times tb=0.01s, tc=0.10s, td=0.20s, te=0.30s,
tf=0.40s, and tg=0.47s are shown in Figures 16(b) through (g), respectively. Since in this case we
consider the fluid to be stationary at time t=0.0s, no initial transitional velocity field is observed.
In this problem, as in the previous cases, the temperature of the fluid domain increases with time
due to heat being conducted from the right wall. Also, fluid’s velocity field is a combination of
the thermal convection and the effect of the FSI.

It can be seen in Figures 16(a) through (c) that for 0.0s�t<0.3s, the solid mainly falls by
gravity. Then the trajectory of the body starts to oscillate in the x-direction as a consequence of the
interaction between the deformation and rotation of the solid and the pressure gradient imposed
by the thermal convection. In Figure 17, a general view of the translation of the solid as well as
its rotation is shown.

4. CONCLUSIONS

The IEFGM was presented and used to solve FSI problems. The method was applied to
simulate the movement of a deformable solid in a viscous fluid due to the combination
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of the gravitational force and the velocity field produced by the thermal convection of the
fluid. The combination of a meshfree particle method (element-free Galerkin) to model the
solid domain and the fluid–structure coupling through MLS interpolants gives the proposed
approach a distinct advantage for simulating FSI problems with highly deformable solids.
The deformation of the solid body obtained in cases II and III was considerably larger than
that presented in previous works. In addition, the method seems suitable for tracking the
movement of microscale deformable solids. One potential application of this feature is the
simulation of defects in casting processes that are caused by deformable inclusions like oxides or
bifilms [31].

The thermal convection of the fluid domain, which represents an important factor affecting
the movement of the solid body within the fluid, was introduced. Details of the velocity field
and the shape and position of the solid as a function of time, which are difficult to model with
finite-element-based formulations, were effectively captured by the IEFGM. In its current form, the
explicit treatment of the FSI force in the momentum equations introduces a limitation in the time
step size. An implicit approach would be necessary to thoroughly evaluate the method’s potential
for longer and larger simulations.

NOMENCLATURE

� computational domain
�f fluid domain
�s solid domain
�̄ overlapping domain
xs solid particles’ current position
x fluid particles’ position
f FSI,si i th Cartesian component of the fluid–solid interaction force in the solid domain
f FSIi i th Cartesian component of the fluid–solid interaction force in the fluid domain
vsi i th Cartesian component of the solid particles’ velocity
vi i th Cartesian component of the fluid nodes’ velocity
�s density of solid
�f density of fluid
�si j Cauchy stress tensor for the solid

�fi j Cauchy stress tensor for the fluid
gi i th Cartesian component of the acceleration of gravity
np number of nodes in the fluid Eulerian grid
npL number of particles in the Lagrangian solid domain
w cubic spline weight function
p(x) complete polynomial of order 1
vh local MLS approximation of the fluid velocity field
� MLS shape function
E Young’s modulus
� viscosity of the fluid
Cd drag coefficient
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